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Abstract 

Limitations on the calculation of high-resolution detail 
in electron microscope images of defects in crystals are 
discussed and it is shown how images of crystals with 
arbitrary strain can be calculated by means of a reinter- 
pretation of the normal dynamical equations. An 
alternative approach, which in some cases is preferable 
for numerical calculations, is the method of periodic 
continuation. These methods, and various approxi- 
mations to them, are applied to the study of high- 
resolution images of edge dislocations. It is shown that 
at the 5 ]k level of resolution, the column approxi- 
mation is adequate for calculating the important 
features of weak-beam images of an edge dislocation 
with an extended core. However, when applied to the 
calculation of lattice fringes near a core, it may lead to 
serious error. Calculations are presented which show 
that, because of spherical aberration, care is required in 
the interpretation of lattice-fringe images near a 
dislocation core even for thin crystals. 

1. Introduction 

High-resolution electron microscope studies of lattice 
defects require accurate image computation for estab- 
lishing the range of validity of detailed image inter- 
pretation. Two approaches for computing images have 
been developed in the literature, one being to approxi- 
mate the imperfect crystal by an artificially periodic 
structure and to perform the calculation as for a perfect 
crystal, and the other being to calculate the scattering 
for a series of columns in the direction of the incident 
electron beam. Estimates of the limits of resolution, 
beyond which approximations based on the latter 
approach are suspect, have appeared in the literature, 
but no rigorous determination of their range of validity 
has been given. This has resulted in confusion as to 
when this approach can be employed. 

In this paper the relationship between the various 
methods of computation is investigated, and the 
limitations and interpretation of a number of approxi- 
mations and models discussed. These investigations are 
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used to study the interpretation of high-resolution 
lattice-fringe and weak-beam images of dislocations. 

2. The theory of  diffraction in an imperfect crystal 

A number of approximations have been developed to 
describe mathematically the diffraction by, and imaging 
of, crystals containing defects. The work of Hirsch, 
Howie & Whelan (1960), Howie & Whelan (1961, 
1962) and Wilkens (1966) involve applications of the 
column approximation. Takagi (1962) and Jouffrey & 
Taupin (1967) consider an extension to this approxi- 
mation whereby images of higher resolution and 
regions of increasing lattice distortion can be con- 
sidered. A more general scattering equation is discussed 
by Howie & Basinski (1968) who conclude that it is 
adequate for all but the most severely-distorted 
crystals. We shall refer to these analyses as the direct- 
space approach since the equations involve functions of 
position. 

An alternative approach has been considered by 
Grinton & Cowley (1971) who approximate the 
problem of scattering by a single defect to one involving 
a periodic lattice, each unit cell of which consists of a 
portion of the deformed crystal containing the single 
defect. The problem then becomes one of considering a 
perfect crystal, albeit with a large unit cell. In addition 
to the Bragg beams of the original perfect-crystal 
lattice, Bragg beams of the artificially periodic lattice 
are also considered. These correspond in position to 
diffuse scattering in the diffraction pattern of the perfect 
crystal. This method, which is most convenient for 
calculations in reciprocal space, is known as the 
method of periodic continuation. 

In this section it is shown how the direct-space 
approach and the method of periodic continuation are 
related. In the course of the analysis it will be shown 
that the set of direct space equations considered by 
Howie & Basinski (1968) is valid irrespective of the 
degree of distortion of the crystal, but that its use in the 
calculation of image intensities is cumbersome when the 
crystal is highly distorted. We also discuss the column 
approximation, the validity of which is shown to 
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depend upon the distribution of diffuse scattering about 
the Bragg reflection, upon the wavelength of the 
electrons and upon the thickness of the crystal. 

2.1. Derivation o f  the equations o f  direct space 

In order to derive the set of equations in direct space 
mentioned above, we begin with that form of 
Schrtdinger's equation in which back-scattering is 
neglected (Tournarie, 1962; Goodman & Moodie, 
1974). Defining the z axis to be normal to the entrance 
face of the crystal which is the plane z = 0, with ~U(r) 
the wavefunction of the electron travelling approxi- 
mately in the positive z direction and v(r) the crystal 
potential, it can be shown that the wavefunction qt = 
~,(r) = ~V(r) exp ( - i k .  r) satisfies (to a good approxi- 
mation for electrons of moderately high energies) the 
equation 

OIl/ i [ co2 q 1 cO21tI cOIl/ cOllt ] 
- - -  + ~ + 2 i k x ~  + 2iky 

cOz 2k z cOX 2 cOy2 cOX -~ -  
+ icy (r) ~, (2.1) 

where k is a wavevector with components k x, ky, k~ and 
magnitude k = 2n/;t, ;t being the wavelength of the 
electrons, o is the interaction constant given by 

a plane approximately perpendicular to the z axis. The 
functions us(r) are also arbitrary but two convenient 
choices will be mentioned (see also § 4.2). The first, 
applicable under the deformable-ion model (for which 
va(r) = v p [ r  - -  R(r)], where vp(r) and vd(r) are the 
potentials of the perfect and imperfect crystals respec- 
tively, and where R(r) is the displacement field 
associated with the defect), is 

ug(r) = Vs exp [--2nig. R(r)], (2.4) 

where Vg is a Fourier coefficient of the potential of the 
perfect crystal. A second choice is to define us(r ) so 
that it has Fourier components corresponding to wave- 
vectors only in the first Brillouin zone and, if u is such a 
wavevector, its Fourier transform at u equals the 
Fourier transform of v(r) evaluated at g + u. This is the 
choice made when the rigid-ion model for the potential 
is used. For this model the potential in the crystal lattice 
equals the sum of the potentials of each atom in the 
distorted crystal. The potential due to one atom is 
assumed equal to its potential in the perfect crystal. The 
effect upon image calculations of choosing between 
these two approximations is considered in § 4. 

Having chosen a set of functions us(r), we define the 
functions (%(r) by requiring that they satisfy the two 
conditions 

me 
tr - (2.2) 

h 2 kz 

In deriving equation (2.1) from Tournarie's equation, 
the Fresnel approximation for wave propagation is 
made and terms containing the factor ha are considered 
negligible. The incident wavefunction must be consis- 
tent with the assumption that scattering in the negative 
z direction is negligible, but it need not be planar. 
Equation (2.1) can be applied to a choice of initial 
wavefunctions appropriate for calculating micro- 
diffraction intensities and convergent beam patterns 
obtained by using a coherent source of electrons, as 
well as for the more straightforward situation of parallel 
illumination. 

Equation (2.1) may be used to calculate images and 
diffraction patterns of an imperfect crystal, but the 
occurrence of the second derivatives of the wave- 
function causes computational difficulties except for 
very thin crystals. However, a more manageable set of 
equations can be developed to replace the single 
equation (2.1) by expanding the potential v(r) in the 
series 

v(r)= Y u,(r) exp (2n/g. r). (2.3) 
g 

In principle, the vectors g may be any set of vectors 
in reciprocal space, but generally a useful choice, if the 
crystal is not too distorted, is a set of reciprocal-lattice 
vectors corresponding to the perfect crystal which lie in 

v/(x,y,O) = ~ q~g(x,y,O) exp (2nig. r) (2.5) 
g 

and 

0 i c O [  cO2 
cO---z (°s(r) = 2nis,~0,(r) + 2-k [-~--/x 2 + cOy----i 

+ 2i(kx + g:')-~x + 2i(ky + gr) rPs(r) 

+ ia • Uh(r) ~0g_h(r ), (2.6) 
h 

where 
sg = - ( n / k z )  g.[g + k/n]. (2.7) 

The condition imposed by equation (2.5) is com- 
patible with the differential equation (2.6). It is now 
straightforward to show that the function ~(r) defined 
by 

~ ( r )=  Y. tps(r) exp (2nig. r) (2.8) 
g 

satisfies equation (2.1). Furthermore, by equation (2.5), 
~,(r) satisfies the boundary conditions at z = 0 and so 
~,(r) is the unique solution to Schr6dinger's equation 
which satisfies the given boundary condition. Unique- 
ness can be seen by noting that if ~,i(r) and ~2(r) are 
two solutions to equation (2.1) which satisfy the 
boundary condition, then ~,'(r) = ~'l(r) - ¢2(r) also 
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satisfies the equation and the boundary condition, since 
~' (x,y,O) = ~(x ,y ,O)  - ~2(x,y,0) = 0. The solution to 
equation (2.1) when the incident wavefunction is zero is 
a function which is zero for all values of x and y and all 
positive values of z, i.e. q/(r)  = 0 and so qJ~(r) = I//2(1) 
for all such values of r. Hence, there is only one 
solution to equation (2.6) for given sets of functions 
us(r) and ~os(x,y,O). Furthermore, for a different set of 
reciprocal lattice points, h, and different functions Uh(r ) 
and ~0n(X,y,0) representing the potential function v(r) 
and the incident wavefunction v/(x,y,O), the solution 
Ch(r) to the equation corresponding to (2.6) represents 
the same scattered wavefunction as that represented by 
the functions ~ps(r). Iq~s(x,y,H) 12 is usually interpreted 
as the image formed by placing the objective aperture 
around the gth reflection. It is shown in § 2.3 that this is 
not necessarily a proper interpretation if tpg(x,y,H) is a 
rapidly varying function o fx  and y. 

2.2. Reciprocal-space formulation o f  the scattering 
equations 

A useful form of equation (2.1) is obtained by taking 
its Fourier transform with respect to the variables x and 
y. If u is a two-dimensional vector in reciprocal space, 
then the Fourier transform of f - f ( x , y )  is defined as 

. F~( f )  = f dx  f d y f ( x , y )  exp [-2~zi(UxX + uyy)]. 

On using the convolution theorem for Fourier trans- 
forms one obtains from equation (2.1) 

d 
d---z ~ , , (z)= 2ms,, W,,(z) + itr f du' V.,(z) ~u-,,(z), (2.9) 

where 7~,,(z) and V,,(z) are the Fourier transforms of 
~(r) and v(r) respectively, s. is defined by equation 
(2.7). 

The use of equation (2.9) for image calculations by 
the method of periodic continuation (Grinton & 
Cowley, 1971)is discussed in § 3.2. 

Equation (2.9) reduces to the standard set of 
scattering equations (Hirsch, Howie, Nicholson, Pash- 
l e y &  Whelan, 1965) if the crystal is perfect, in which 
case 

Vu(z) = ~ V (s) fi(u x - gx) 6(uy -- gy) exp(27rig~z), 
g 

~,(z)  = ~ 7 ttg) 6(u x - gx) f i ( u y -  gy) exp(2rcig~z), 
g 

where g is a three-dimensional lattice vector for the 
perfect crystal. On substitution of these expressions into 
equation (2.9), there result the standard equations 

d ~ ) ( z )  
- -  - 2n/sg 7zgl(z) + ~i Y~ ~-~ 7'(g-h)(z), 

dz h 

where ~g = zc/(trV tg~) is the extinction distance for the 
gth reflection. 

The effects of a finite objective aperture, spherical 
aberration and defocusing on the image can be readily 
calculated from ~u(z). If the objective aperture is 
centered on the point u c and is of radius u m in reciprocal 
space, it is appropriate to use the aperture function 

A ( u )  = 1 lUl <~ U m 

~--- 0 l U! ~ Um. 

With a defocus of e and a coefficient of spherical 
aberration of C s, the image intensity is found by 
considering the Fourier transform of 

A(u) e x p l n 4 2 e ( u -  uc) 2 + ½~ziCsA3tu- uct 41 Wu(H). 

(2.10) 

2.3. Conditions for  interpreting i ~0g(r) l 2 as an image 

Howie & Basinski (1968) interpret I tps(r)l 2, obtained 
by solving equation (2.6), as the image which results 
from placing an aperture around the Bragg reflection g. 
We now discuss the conditions under which such an 
interpretation is justified. 

For this purpose it is convenient to carry out the 
analysis in reciprocal space. For z = H, the intensity at 
the point g + u of the diffraction pattern is I ~t tg+u(/- / ) l  2 
and may be obtained directly by solving equation (2.9) 
or by Fourier transformation of equation (2.8), in 
which case 

~ g + . ( H ) - -  • a~(h) Tg_h+u(H), (2.11) 
h 

where q~h)(Z) is the Fourier transform of ~ph(r). This 
equation expresses the intensity of diffracted electrons 
in terms of contributions from each of the functions 
~0g(r). As discussed in the previous section, the image 
that results when an objective aperture is centred on the 
reciprocal lattice point g is obtained by multiplication of 
equation (2.11) by the aperture function A(u). Assum- 
ing that the objective aperture admits only one Bragg 
reflection, we distinguish three cases which are 
represented in Fig. 1. 

(1) The only Fourier components of v/(x ,y ,H) which 
are admitted by the objective aperture are all of those of 

¢° u) ¢~ ~g~ 

o g =g 
I I 1 1 I I  A1 i f / I l l  " / / 1 / 1 / [ / H I  A3 g I l l l l /  

-11111111 A~ b r I l l / l l l l } .  

Fig. 1. Schematic representation of distribution of scattering from a 
non-periodic object. An image formed with (a) aperture A 1 is 
given by I~o0(x)l 2, (b) aperture A2 by l~o2,(x)*A2(x)l 2, (c) 
aperture A3 by 1[¢2~(x) + ¢~(x)exp(-2zrigx)] * A3(x)! 2. Cg(x) is 
the Fourier transform of tp~ g~ and A2(x) denotes an aperture 
function in direct space. 
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~8(x,y,H).  This is the situation depicted in Fig. 1 when 
aperture A 1 is used. The in-focus unaberrated image is 
given by 

I (x ,y )  = If du ~ ( H )  A (u - g) exp [27ri(u - g). r]l 2 

= If du ¢~g)(H) exp (27riu. r) l 2 

= i tps(x,y,H)l 2, (2.12) 

which is the interpretation usually given to the function 
~Ps(r). 

(2) Only some of the Fourier components of 
~os(x,y,H) form the image (e.g. when aperture A2 of 
Fig. 1 is used). In this case, the image intensity is again 
given by the first line of equation (2.12) which reduces 
to 

I (x ,y )  = If dx '  f dy' a(x  -- x ' ,  y - y ' )  ~ps(x',y',H)l 2 

=- la(x,y) * tpg(x,y,H)l 2, 

where a(x,y)  is the Fourier transform of the aperture 
function A (u). 

(3) Fourier components of more than one of the 
functions ~ps(x,y,H) contribute to the image (e.g. 
aperture A3 in Fig. 1). Then the image intensity is 

I (x ,y )  = la(x,y) * ~. ~ ( x , y , H )  exp [2zci(h - g).r] P 2, 
h 

where the sum is over those values of h for which 
tPh(X,y,H) makes a significant contribution to the 
image. Thus, whether the usual interpretation of the 
function ~0g(r) is valid depends on the size of the 
objective aperture and on the extent of diffuse scatter- 
ing around each Bragg reflection, or equivalently, on 
how rapidly the functions ¢pg(r) vary with x and y. 

An indication of when the extent of diffuse scattering 
may be too great for equation (2.12) to be valid is 
obtained by considering the Fourier transform of 
equation (2.6) 

d 
- -  ~(~')(z)= 2n/s,+,, ~ ( z )  + io" Z f du' u~h)(z) 
dz h 

x ¢1~-)) (z), (2.13) 

where u~h)(z) is the Fourier transform of Uh(Z) with 
respect to x and y. In general the effect of the 
convolution integral in this equation is that the range of 
values of u for which ~g)(z) is non-zero increases with 
depth in the crystal. This range depends on the range of 
values of u for which the function U~S)(z) is non-zero, 
i.e. on the amount of distortion of the crystal lattice 
perpendicular to the direction of the incident beam, and 
on the depth over which this distortion is significant. 
Thus, if the crystal is highly distorted, but only for a 
thin region, the ranges of values of u for which q)~S)(z) 
and U~)(z) are significantly different from zero are 
approximately the same and the diffraction pattern at a 
particular point in reciprocal space results from only 
one of the functions ~0g(r). 

2.4. Approximations 

The approximations to the direct-space equations 
(2.6) due to Takagi (1962) and Jouffrey & Taupin 
(1967) and the column approximation have already 
been mentioned. The former approximation consists in 
assuming that the second derivatives of the wave- 
functions tps(r) are negligible, while the column approxi- 
mation makes the additional assumption that the first 
derivatives with respect to x and y are negligible. The 
form of these approximations in the reciprocal space 
formulation of the scattering equation can be seen by 
considering equation (2.13). 

The approximation of Takagi (1962) and Jouffrey & 
Taupin (1967) is to assume 

s,+., ~8)(z)= [ sg - (z t /k , )u . (g  + k/z0l q~B)(z) (2.14) 

in equation (2.13). The approximation assumes that 
terms involving ;tu 2 ~S)(z) are negligible. The column 
approximation is 

sg+,, ~ ) ( z )  = sg ~S)(z). (2.15) 

In geometrical terms, the approximation of equation 
(2.14) corresponds to the replacement of the Ewald 
sphere in the regions around g by a plane tangential to 
the sphere, while equation (2.15) corresponds to 
approximating the sphere by a plane parallel to the 
u x - u y  plane. These approximations are indicated in 
Fig. 2. Note that a point on the Ewald sphere is not 
replaced by a unique point if the diffuse scattering 
contains contributions from more than one of the 
functions ~g)(z). There is a different planar approxi- 
mation for each of these functions. 

An indication of the effects and importance of 
neglecting the term (n /k z )u  2 ~ V ( z )  in equation (2.13) 
may be obtained by comparing an in-focus image with 
one that is out of focus by an amount equal to the thick- 

(a) 
s t 

/ 

(b) 
Fig. 2. Schematic representation of the Ewald sphere (full line) and 

approximations to it (broken line), (a) under the column approxi- 
mation, (b) under the approximation of Takagi (1962) and 
Jouffrey & Taupin (196"/). 
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ness of the crystal. If there are significant differences 
between the images at the resolution of interest it may 
be concluded that the term involving u 2 in equation 
(2.13) is significant and that the approximation of 
Takagi (1962) and Jouffrey & Taupin (1967) is unsatis- 
factory. 

The above analysis indicates that whether or not the 
column approximation and the approximation of 
Takagi (1962) and Jouffrey & Taupin (1967) are valid 
depends upon the extent in reciprocal space of diffuse 
scattering around the Bragg reflections because the 
approximations of equations (2.14) and (2.15) become 
more accurate for decreasing I u l. At the same time, it is 
evident from equation (2.13) that errors due to these 
approximations decrease with decreasing foil thickness 
so that, for any given level of resolution, the column 
approximations will be valid for a sufficiently thin 
crystal. 

Approximations which treat scattering by a defect 
only to first order in the potential have been developed 
by Wilkens (1966, 1970) and Howie & Basinski (1968). 
Wilkens has applied the approximation to the cal- 
culation of images of small loops in thick foils. 
However, such approximations are often inappropriate 
at high resolution even for defects in thin foils. This is 
brought out in the work of Fields & Cowley (1978) 
who calculated scattering by interstitials in gold. Their 
calculations show that for a foil 20 A thick, the 
diffraction pattern is significantly different from the 
predictions of the kinematic theory. 

An approximation described by Spence (1978) is 
also correct only to first order in the potential functions 
of the defect. This approximation includes the effect of 
scattering from Bragg directions to directions of diffuse 
scattering but not the inverse scattering. This is similar 
to the assumption leading to the kinematic theory for a 
perfect crystal, a theory which is correct to first order in 
the potential. 

Spence (1978) formulates the approximation in 
reciprocal space. The corresponding approximation in 
direct space is obtained by writing the potential 
function as v(r) = v(P)(r) + v(a~(r) and the wave- 
function as ~(r) = ~(P)(r) + ~'(d)(r) (where v~P)(r) and 
~,(;)(r) are periodic functions), and substituting these 
expressions into Schr6dinger's equation (2.1). (For a 
pictorial representation, see Cowley, 1975, p. 143.) 
The approximation, which is to assume that the term 
V(d)(r)llltd)(r) is negligible, will be valid if diffuse 
scattering by the non-periodic potential v (a) (r) is small. 

In the high-voltage limit the approximation becomes 

- -  ~,(P~(r) = iovtP)(r) ~,(P)(r), 
zd 

~ ' (d ) ( r )  : i{TIv(P)(r) ~, (d) ( r )  + v(a)(r) ~,~p)(r)], 
c% 

from which the approximate wavefunction is found to 
be 

H 
~(x , y ,H)  = 1 + ia f dz' v~d)(x,y,z ') 

o 

] x exp ia f dz' v~P)(x,y,z') . 
o 

This example clearly brings out the first-order nature of 
the approximation. 

3. Computation of images of defects 

3.1. Computations in direct space 

In principle, equation (2.1) (the form of 
Schr6dinger's equation which neglects back-scattering) 
can be used in numerical work, but because the wave- 
function ~,(r) is a rapidly varying function of x and y, 
lengthy calculations would appear to be necessary for 
all but the thinnest crystals to account accurately for 
the terms involving the second derivative. Use of 
equation (2.6) is preferable because the ~0s(r ) are slowly 
varying functions of position compared with the ~,(r), 
but even then there are situations in which a large part 
of a computation is taken up with evaluating the second 
derivatives of the wave function. 

Several authors have computed images using 
equation (2.6) (Howie & Basinski, 1968; Howie & 
Sworn, 1970; Humphreys & Drummond, 1976), with 
the second derivatives being determined by com- 
parison of ~g(r) at neighboring points. However, the 
computational necessity to limit the extent of this region 
means that the derivatives can be evaluated only 
approximately at the boundaries of the region. 
Computations have shown that care must be exercised 
to ensure that the effects of this approximation do not 
dominate the image. Distortion of the image may also 
occur if the distance between columns is too large (in 
certain cases, greater than 2 A). 

While equation (2.6) places no restriction on the 
form of the potential, it is most easily integrated when 
the functions uh(r) are slowly varying with position. For 
this reason computations based on the deformable-ion 
approximation are preferable to those using the rigid- 
ion approximation, since in the latter case the functions 
Uh(r), if defined as in § 2.1, vary over a distance which 
is of the order of the periodicity of its highest-order 
Fourier component. Such variations can lead to 
difficulties for accurate numerical calculations involving 
the second derivative of the wavefunction. However, as 
an approximation, the deformable-ion model is less 
satisfactory for regions of large lattice displacements. 

3.2. Computations in reciprocal space 

Before one can use equation (2.9) in computations 
involving a defect, it is necessary to approximate the 
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integral by a summation. A suitable approximation is 
one used by Grinton & Cowley (1971), and further 
discussed by Cowley (1975) and Fields & Cowley 
(1978), in which a periodic structure is constructed 
from a finite region containing the defect. This struc- 
ture then possesses an infinite array of defects although 
it does not necessarily correspond to a real crystal 
since, in general, no interaction between displacement 
fields of the defects is taken into account. The scattering 
is calculated as for a perfect crystal. There are a 
discrete set of Bragg beams, most of which correspond 
to the diffuse scattering due to a single defect. The 
distance in reciprocal space between Bragg reflections is 
inversely related to the periodicity of the structure and 
when the periodicity becomes infinitely large the 
calculation becomes one for a single defect. This 
method, the method of periodic extension or periodic 
continuation, has been used by Kuwabara & Uefuji 
(1975), MacLagan, Bursill & Spargo (1977), Spence 
(1978) and others to calculate images of defects. The 
structure factors of the periodic potential are of the 
form 

17,,(z) = Z Vg ~ ( u -  g) + (MNab)-l~. ~'(z) 
g m , n  

(3.1) 

where Ma and Nb are the periodicities in the x and y 
directions of the potential and are integral multiples of 
the periodicities (a,b) of the undeformed lattice. When 
this expression is substituted into equation (2.9), the 
convolution integral is reduced to a discrete summation 
and further, since the scattered wavefunction has the 
periodicity of the potential, its Fourier transform need 
only be evaluated at a discrete set of points in reciprocal 
space. Thus by constructing a periodic potential the 
problem is transformed into a form suitable for 
numerical work. 

The structure factors calculated from a potential 
function describing an isolated defect are of the form 

v,,(z) = Y v ,  6 (u  - g) + V'(z). (3.2)  
g 

If the deformed crystal lattice corresponds to the 
undeformed lattice everywhere but in a finite region 
then the Fourier coefficients V'(z) and V'(z) in 
equations (3.1) and (3.2) are equal at the points u = 
(m/Ma, n/Nb). However, for a defect such as an edge 
dislocation, for which the deformed and undeformed 
lattices do not coincide everywhere except in a finite 
range, the constructed periodic potential deviates signifi- 
cantly from a perfect crystal near the boundary of the 
unit cell, and thus the Fourier coefficients differ. 
Throughout the range of u, the diffraction pattern 
calculated by the method of periodic continuation also 
contains information on the boundary of the unit cell. 

As Spence (1978) has pointed out, it may be necessary 
to introduce a non-planar incident wave, the intensity of 
which falls to zero at the boundary of the unit cell, in 
order to calculate the diffraction pattern due to an 
isolated defect. 

In choosing the size of the periodic lattice for 
computations, precautions need to be taken to ensure 
that the periodic boundaries do not influence features of 
interest in the calculation. For image calculations this 
can be done by centering the feature of interest in the 
middle of the periodic cell and testing whether a change 
in the size of the cell alters the image features 
significantly. 

4. Comparison of approximations 

In this section the regions of validity of the approxi- 
mations introduced in § 2 are tested by computing 
illustrative high-resolution images of an edge dis- 
location. Lattice-fringe images and dark-field weak- 
beam images are calculated using the deformable-ion 
and rigid-ion models of the potentials by means of both 
the direct-space equations (2.6) and the reciprocal- 
space equations (2.9). Additionally, weak-beam images 
and lattice fringe images are calculated by means of the 
column approximation, and these images are compared 
with the results of calculations using the method of 
periodic continuation. 

4.1. Assumptions 
All calculations are systematic calculations for 100 

kV electrons. For the case of copper and silicon the 
systematic row hhO of Bragg reflections is considered, 
while for calculations involving germanium the hhh 
systematic row is considered. The edge dislocation has 
the form shown in Fig. 3. It can be considered as 
resulting from the removal of atoms on the semi-infinite 
planes x = +]d~  0, z > 0. Elastic theory predicts that in 

I t ~° / i 

/ 

/ 
Fig. 3. Representation of an artificially periodic crystal, containing 

edge dislocations, which is used in the method of periodic 
continuation. The boundary of a unit cell is marked by the 
vertical broken lines. Note the 'defect' at the boundary. 
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the deformed lattice atoms at position (x,z) in the 
perfect crystal are displaced by 

b[ , 
R(x,z) = - - -  e sin 2 

2n 4(1 - v) ' 
--~ < tp < zc, 

(4.1) 

in the direction of the Burgers vector b. x, z and ~0 are 
defined in Fig. 3 and v is Poisson's ratio which is taken 
to be ~. A small displacement perpendicular to this 
displacement has not been considered in these cal- 
culations (Hirsch et al., 1965). 

4.2. Rigid- and deformable-ion models 

As outlined in § 2.1, the rigid-ion model determines 
the potential at any given point in a deformed lattice by 
adding the potentials due to atoms individually posi- 
tioned in the deformed lattice. The deformable-ion 
model determines the potential at any given point in the 
deformed lattice by equating it to the potential at some 
point in the perfect lattice. From this it is to be expected 
from the magnitude of the displacement field associated 
with the edge dislocation and the sizes of the unit cells 
being considered (Cu, Si,Ge) that the deformable-ion 
model will be adequate except possibly in the regions 
where the half-planes terminate. In this region the 
deformed potential may exceed the limits of the 
potential of the perfect lattice, and this cannot be 
described by the deformable-ion model. It is therefore 
of interest to see in which regions the models differ 
because of the implications for the interpretation of 
high-resolution images. 

With the dislocation line parallel to the foil plane and 
x parallel to b (Fig. 3), structure factors of copper were 
calculated using the deformable-ion model for par- 
ticular values of z by means of the equation 

md 

Vn(g)(z)= Vg f dx exp(-2nihx)exp[2zdgR(x,z)], 
-rod 

(ol ), h =  , + - - , . . . , + 1  2d, (4.2) 
m 

where d = d~0, Vg is the structure factor corresponding 
to the reflection gg0 and 2md is the cell size. The results 
for copper for m = 20 for the 220 and 660 reflections 
are shown in Fig. 4. For the rigid-ion model, structure 
factors were calculated for an artificially periodic 
potential of periodicity 40d. The atomic model is of the 
form indicated in Fig. 3. (A notable feature of the 
model is the presence of a defect midway between the 
edge dislocations. Structure factors calculated by 
means of such a model of the potential will differ from 
those for a single isolated defect in that the structure 
factor of the boundary defect (a 'hole') will be 
included.) When the contribution of the boundary 
defect is allowed for, structure factors around non-zero 

values of g calculated by the deformable-ion model and 
the rigid model agree to within 2% of the value of Vg. 
Structure factors around g = 0 are zero when 
calculated by the deformable-ion model. Calculations 
using the rigid-ion model show that for a distance 
greater than 8 A in the z direction, structure factors 
around g = 0 are small. 

Calculations show that for z = 100/~ the structure 
factors are close to those for a perfect crystal. As z 
decreases in magnitude, i.e. for regions close to the dis- 
location core, a number of structure factors in addition 
to those at reciprocal lattice points of the perfect crystal 
become significant. For some values of z they may 
become larger than that for the Bragg beam. For such 
regions a kinematic treatment of diffuse scattering may 
be inadequate for calculating the image intensity. 

Comparing the structure factors around g = 220 
with those around g = 660, it is seen that diffuse 
scattering is spread out more around higher-order 
Bragg reflections, which is to be expected on con- 
sideration of equation (2.4). This suggests that the 
column approximation will be less satisfactory when 
high-order reflections significantly influence the image. 

4.3. Dark-field weak-beam images 
Dark-field weak-beam images of an edge dislocation 

in copper with the geometry described in § 4.1 were 
calculated using a number of different approximations 
in order to determine their accuracy. The point of 
termination of the extra half-planes was taken as 50/~ 
below the entrance face of the crystal and values of the 
total crystal thickness up to 450 /k were considered. 
While these represent experimentally small values of 

Vu 
o 

Z=2A Vo 

~_~11 I I 1/d 1.125/d 

Z=lO,~ 

~ . v , l , u l  -II, 

Z= 20.~ 

l i lJ  . . . . .  =: 

z=2~, 

3/d 3125/d 
~ql I I _ l  . . . . . . . . . .  

i i ,  T 

I--I l 
'fJ , . 

Z= 10~, 

I[,,, . . . . . . . .  
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"@1 ' ' . . . . . .  @ ;  

Fig. 4. Structure factors around reciprocal lattice points g = 220 
and g = 660 calculated along lines at distance z from an edge 
dislocation in copper;  d = d22  o. 
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dislocation depth and foil thickness, they are adequate 
for purposes of comparing methods of calculating 
images. Calculations included the 000 and 220 reflec- 
tions, i.e. calculations were 'two-beam', with the crystal 
oriented so that the Ewald sphere passed through the 
point 1/d (6.2, 6.2, 0). A slice thickness of 5 A was 
used in the calculation and no absorption was included. 

Images were calculated by means of" 
(1) The reciprocal-space equation (2.9) and the 

rigid-ion model along with the method of periodic 
continuation. The image was formed by assuming an 
objective aperture radius of 0.4 A -1. 

(2) The direct-space equation (2.6) with the rigid-ion 
model and the method of periodic continuation. The 
potential functions were defined as 

N - - I  

Uo(X,Z ) = ~ Vh(Z) exp (-2~zihx), 
J = - ( N - I )  

N 

ug(x,z)= ~ V~+h(z)'exp(--2rtihx), 
J=--N 

where h = j / N a  and where V h (z) is the structure factor 
calculated from the artificially periodic potential of 
period Na. The image intensity was assumed to be 
equal to 1% (x,z) l 2. 

(3) The assumptions described in (2) above along 
with the additional assumption of the column approxi- 
mation. 

(4) Equation (2.6) and the deformable-ion model. 
The choices of potential functions were 

Uo(X,Z) = Vo, 

ux(x,z) = V s exp[-2nigR (x,z)], 

and the image intensity was taken equal to I tpg (x,z) l 2. 
(5) The assumptions of (4) and the column approxi- 

mation. 

006t 410/~' 
O.04 

0"0 21 ~ _  

4204 

006 t 4301~ 
44 0/~, , 20~, 

Fig. 5. Dark-field weak-beam images of an undissociated edge dis- 
location at a depth of 50 ,~, in copper foils of thickness ranging 
from 410 to 440 /~. The image is formed with the g = 220 
reflection. The Burgers vector is b = a/2[110] and s~ = 2 x 10 -2 
A -1. The background intensity is indicated by the broken line. 

For all calculations, images of the form shown in Fig. 
5 were obtained. The shapes and heights of the weak- 
beam image peaks calculated by these five methods 
were not found to be significantly different at the 3 /~ 
level of resolution. The periodic dependence of the 
height of the peak on the thickness of the crystal and 
the width of the peak were found to be consistent with a 
kinematic description of the scattering (Cockayne, 
1972). Images at four different thicknesses are shown in 
Fig. 5. The small feature to the left of the peak which 
appears at some thicknesses is seen to be below the 
level of the background intensity indicated by a dotted 
line and so is not considered an observable feature (for 
a discussion, see Cockayne, 1978). The only sig- 
nificant effect of making the column approximation 
is to cause a miscalculation in the position of the image. 
This indicates that the term involving the second deriva- 
tive of the wavefunction is not important and that 
neglect of the term - ( kx /k )  cotpg(r)/Ox in equation (2.6) 
means that a shift of the image relative to the position 
of the defect is not calculated. This shift is due to the 
fact that the Bragg beam which forms the weak-beam 
image is not in the direction of the z axis within the 
crystal. 

The above calculations are based on a 'two-beam' 
approximation. To determine the effects of making this 
aproximation, equation (2.6) with the deformable-ion 
model was integrated taking into account four beams. 
A comparison of images calculated with and without 
the column approximation shows that, as for the two- 
beam calculation, they differ only in a slight displace- 
ment. This displacement is less than that in the two- 
beam case. 

Howie & Sworn (1970), using equation (2.6), 
concluded that the column approximation results in 
significant distortion of the weak-beam image formed 
with the 440 reflection when the 220 reflection is 
satisfied. Our calculations using this equation give no 
evidence of the column approximation producing 
distortion of the 440 image. However, distortion similar 
to that calculated by Howie & Sworn occurs if the 
distance between columns is taken as 4/~. It disappears 
if the distance is chosen as 2/~ or less. Further spurious 
effects arise if the boundary of the region of calculation 
is less than 20/~ from the part of the image which is of 
interest. From our calculations we conclude that in this 
case too the column approximation results only in a 
displacement of the image. 

4.4. Lattice-fringe images 
We now consider the applicability of the column 

approximation for calculating lattice-fringe images near 
an edge dislocation in a crystal of silicon which is 
viewed along the dislocation line direction (i.e. for the 
displacement field shown in Fig. 3, the foil normal is 
parallel to the y axis, with the x axis parallel to [ 110]). 
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Systematic calculations were made of an image along a 
line z = 0 defined in Fig. 3. The model of the potential is 
one in which there are four atoms at each of the 
positions 

xk+ . =  +(½na + 5ka), n =  1 ,2 , . . . ,9 ,  

k = O, 1, 2,. . . ,  

i.e. the potential is periodic and atoms are on the points 
of a lattice except at points + 5ka. The structure factors 
for such a structure can be regarded as being those for 
a perfect crystal less four times the form factor for a 
single atom of silicon. This is shown in Fig. 6. 

Since the structure factors are significantly different 
from zero midway between reciprocal lattice points it is 
to be expected that the predictions with the column 
approximation will not be accurate (see § 2.5), and this 
is seen in the following analysis. 

We consider the orientation in which the 220 
reflection is satisfied and images are formed by 
centering the objective aperture midway between the 
incident beam and this Bragg beam, both of which 
contribute to the image. Two-beam calculations were 
performed for thicknesses up to 240 A. The potential 
was considered to be independent of depth in the 
crystal. 

Two sets of images, shown in Fig. 7, were calculated, 
one by integrating equation (2.6) under the assumption 
of the column approximation, and the other by 
integrating equation (2.9) by the method of periodic 
continuation. Since the deformable-ion model is 
inappropriate for describing the potential near the core 
of the dislocation, the functions uo(x ) and ug(x ) in  
equation (2.6) were defined by 

4 

u0(x)=  ~ Vhexp(-2rrih.x), 
J=-5  

5 
u~(x)= ~ Vh+gexp(--2zdhx), 

J=-5  

where h = j /5a .  The image intensity, for those 
calculations based on the column approximation, is 
given by ItPo(x,n) + qgg(x,H)exp(2zdgx)l 2. The cal- 

I l l l i i , ,  , . . . . .  
000  220  

. . . .  , , , l l l l l l  
~o 

Fig. 6. Structure factors for an edge dislocation in silicon calculated 
by considering atoms along the line z = 0 (defined in Fig. 3) and 
using an artificial potential with length of unit cell ten times that 
of the perfect crystal. 

culations using the method of periodic continuation 
take into account reflections from j = - 5  to j -- + 15. 
All of these reflections were used to form the lattice 
fringe images. 

Images at different thicknesses are shown in Fig. 7. 
At a thickness of 40 A, images calculated by the two 
methods are very similar. This is to be expected since 
the effect of Fresnel diffraction, which is treated only 
approximately by the column approximation, is small. 
For thicker crystals significant differences between the 
two sets of images are apparent because Fresnel 
diffraction effects increase with increasing thickness. At 
240 A thickness, the images calculated using the 
method of periodic continuation show a spacing of 
fringes near the core of the dislocation which differs 
from the spacing of the lattice planes. In comparing this 
image with the image from a thin crystal, an additional 
fringe appears to the left of the core and the first fringe 
on the left is displaced approximately 0.4 A, or 20% of 
the fringe spacing. Such a distortion of fringe spacings 

4oA 

~6o~ 

/t/7VW" VVVV 
240/~, 2A 

T 

- .~ X 
(a) 

40/, 

~6oA 

24o/~ 2/~, 

(b) 

Fig. 7. (220) lattice fringes along the line z = 0 of an edge 
dislocation in silicon viewed along the dislocation line. Fringes 
from foils of  varying thickness are calculated (a) by means of the 
column approximation and (b) using equation (2.9). The crystal 
is oriented so that Sno = 0. 
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appears to have been observed experimentally in 
aluminium by Parsons & Hoelke (1969). That this 
distortion is not due to the boundary of the unit cell was 
verified by calculating with an artificial unit cell of 20 
times the length of the basic unit cell. 

The image calculations of § 4.3 and § 4.4 illustrate 
the conclusions that the column approximation cannot 
be assigned an absolute resolution limit of validity. 
Rather, whether or not it can be used in a particular 
case is determined by the effects of Fresnel diffraction, 
which depend upon foil thickness, electron wavelength 
and, above all, the extent of diffuse scattering in the 
region between Bragg reflections. On the other hand, 
calculations show that for the case considered in § 4.3, 
the kinematic theory (even when it treats wave 
propagation exactly) is inadequate for calculating 
images even for a foil thickness of 40 A. 

5. Interpretation of high-resolution images 

In this section, the method of periodic continuation is 
used to study two experimental methods currently 
under consideration for investigating dislocation cores, 
viz the lattice-fringe method and the weak-beam 
method. Both of these methods aim to obtain electron 
microscope images which can be interpreted in terms of 
dislocation structures. The restrictions on making a 
direct interpretation are investigated below. 

5.1. Lattice fringe images in germanium 

With the geometry described in § 4.1, (111) lattice- 
fringe images were calculated along a line parallel to 
[110] through the core of a sessile edge dislocation in 
germanium which was viewed in the direction [ l i0]  
along its line. This geometry was chosen to correspond 
with the experiment of Bourret, Desseaux & Renault 
(1977). The lattice spacing is dl~ 1 = 3.27/k,  a spacing 
suitable for resolution by a modern electron microscope 
operating at 100 kV when the foil is oriented so that the 
I I 1 and i i i reflections are equally distant from the 
Ewald sphere. 

Images were calculated by the method of periodic 
continuation for foil thicknesses up to 320/k. A unit- 
cell size of 20dll I was used and reflections from 222 to 
222 were included in the calculation. Images for a range 
of thicknesses are shown in Fig. 8. The objective 
aperture admits all reflections within 1 . 3 / d ~  A -~ of the 
origin. At 40 ,/~ thickness, the spacing of fringes equals 
the spacing of lattice planes. As the thickness of the foil 
increases, this correspondence fails to hold for fringes 
close to the core of the dislocation. 

Spence, O'Keefe & Kolar (1977) have calculated 
two-dimensional lattice images of a perfect crystal of 
germanium. They show that images which correspond 
directly with the structure of the crystal exist in thicker 

regions of a foil as well as in thin foils. These thick- 
nesses can be predicted from a consideration of the 
thickness dependence of the amplitudes and phases of 
diffracted beams. Calculations for a perfect crystal in 
the orientation considered here predict that images at 
40 and 320 ./~ thickness should correspond in perfect 
regions of the crystal. An examination of the images at 
these thicknesses in Fig. 8 show that away from the 
dislocation core the positions of lattice fringes are very 
close for the two thicknesses, but close to the 
dislocation core the separation of fringes differs by as 
much as 5% in the thicker foil. Thus it may be 
concluded that there may not be a direct corre- 
spondence between images and structures of defects for 
a particular foil thickness even if, for that thickness, the 
relationship in the perfect crystal is a direct one. This is 
in agreement with the conclusions of Spence, O'Keefe 
& Iijima (1979) based on two-dimensional calculations. 

These results suggest that to investigate structure it is 
easiest to examine thin foils. However, spherical 
aberration of the objective lens may distort the image 
even of a thin crystal. Fig. 9 shows images calculated 
for a 40 ,/~ foil when the coefficient of spherical 
aberration is 0.7 mm for a range of defocus values 
around an optimum value of 900/k  underfocus using 
equation (2.10). The radius of the objective aperture is 
1.3/d~ A -1 .  In these examples, spherical aberration 
causes a distortion of up to 5 % in the spacing of fringes 
compared with the spacing of lattice planes. Cal- 
culations show that the distortion depends on the radius 
of the objective aperture. Thus even for a thin crystal 

T 

320A 

240~ 
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4oh 

~oh t i ,'X 
Fig. 8. (111) lattice fringes along a line parallel to [110] through the 

core of a sessile edge dislocation in germanium viewed along its 
line for foils of various thickness. The foil is oriented so that s]~ 
= $ ITT"  
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there may not be a direct relationship between image 
and structure of a distorted region of the crystal. 

Bourret, Desseaux & Renault (1977) have compared 
the position of experimental lattice-fringe images near 
an edge dislocation in a thin foil of germanium with the 
position of lattice planes calculated by elastic theory of 
dislocations. Close to the dislocation, differences 
between the fringes and calculated lattice planes are 
evident. Two-dimensional calculations are needed to 
determine to what extent the difference is due to the 
inadequacy of the model and how much is due to 
instrumental parameters. 

From the calculations of this section and those of 
§ 4.4, the following points can be made. 

(1) Near an edge dislocation the effects of Fresnel 
diffraction can cause distortion in lattice-fringe spacings 
in thick foils, both when the Bragg condition is satisfied 
and when a symmetric orientation is employed. 
Distortion may also occur near the dislocation at those 
foil thicknesses for which there is a direct relationship 
between structure and image for the perfect crystal. 

(2) Spherical aberration and the amount of defocus 
of the objective lens may cause distortion of the image 
near the centre of the dislocation even for thin foils. The 
amount of distortion depends on the radius of the 
objective aperture. 

5.2. High-resolution weak-beam images 

The possibility of using dark-field weak-beam images 
to study the structure of dislocation cores has been 
suggested by the results of earlier image calculations 
(Cockayne & Vitek, 1974). In these earlier studies, two 
dislocation core models were used, one based on a 
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Fig. 9. (111) lattice fringes in germanium for a foil thickness of 40 
A, C s = 0.7 mm and varying values of defocus of the objective 
lens. Other details as for Fig. 8. 

singular Volterra-type dislocation (hereafter referred to 
as a singular core) and one based on atomic positions 
determined from atomistic calculations with a par- 
ticular atomic potential (extended core). Weak-beam 
images were calculated for these core models, and it 
was demonstrated that extended cores showed image 
detail at the 5 A level of resolution which was not 
present in images calculated for singular cores. The 
most significant feature of the images was a 'core peak' 
in the case of the extended-core model, identified as a 
narrow (approximately 5 A width at half-height) region 
of intensity many times background. An example is 
shown in Fig. 10, and the core peak is found repeatedly 
in weak-beam images calculated for dislocations at 
various depths and in foils of differing thickness, when 
the dislocation has an extended core. Consequently it 
was suggested that such image detail might offer a 
means of studying the core. 

The scattering equations used to calculate the image 
shown in Fig. 10 make use of the column approxi- 
mation, and it is necessary to establish that this 
approximation is reliable at the resolution involved in 
detecting the core peak in Fig. 10. For this reason, 
images were calculated using equation (2.9) and the 
method of periodic extension discussed previously in 
this paper. 

Calculations have been performed for the defect 
geometry shown in Fig. 3. From this figure it is 
apparent that, as well as the defect of interest in the 
centre of the extended cell, there is an 'additional' defect 
at the boundary caused by the termination of the 
extended cell in an imperfect crystal. The influence of 
this additional defect at the boundary upon the 
diffraction pattern and image has been discussed in 
§3.2. 
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Fig. 10. Weak-beam image calculated with the column approxi- 
mation for an undissociated edge dislocation in copper, but with 
an extended core (for core parameters see Vitek & Cockayne, 
1974). Dislocation depth = 1.54~s , foil thickness = 3 .04~,  g = 
220, 100 kV electrons, six-beam calculation, Sno = 2 x 10 -~ A -1. 
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(c) 
Fig. 11. Weak-beam images calculated with the method of  periodic continuation for undissociated edge dislocations at a depth of  50 

A ( = 0 . 1 ~ )  in a copper foil of  thickness 140 A. The diffraction geometry has g = 220 with s220 = 2.85 x 10 -5 A -~ and 100 kV electrons. 
The core models are as for equation (5.1) with (a) 2X = 0 A, (b) 2X = 10 A, (c) 2X = 15,4,. The sensitivity of  the 'core peak' to the 
core 'width'  2X  is to be noted. 

Fig. 11 (a) shows a calculated weak-beam image for a 
dislocation at depth 50 A in copper for the diffrac- 
tion geometry given. The image is obtained by 
allowing all elastic diffuse beams from 3 lg'  to 93g' to 
contribute to the image, where g'  = 1/(62d220). 
Included in the calculation are reflections - g '  to 93g'. 
The extended cell is 79/~ = 62d220 wide. The image is 
very similar to those obtained using equation (2.6) with 
the column approximation, and there are no differences 
significant at the level of 5 A. In particular, there is no 
evidence of any core peak in images calculated using 
the extended-cell method when singular core models of 
defects are used. 

For many materials, the singular Volterra dislocation 
core is unsatisfactory when particular properties of 
dislocation (e.g. ease of cross-slip) are being considered. 
In a study of what influence core parameters have on 
dislocation dissociation, Cockayne & Vitek (1974) used 
a core model with atomic coordinates determined from 
atomistic calculations using a potential for copper. In 
this model, the core structure of the dislocation was 
described as a distribution of discrete closely spaced 
singular dislocations, the sum of whose Burgers vectors 
is equal to the Burgers vector of the total dislocation 
(for further details see Cockayne & Vitek, 1974). The 
distribution of the atoms in this 'extended' core 
compared with the distribution for a singular core is 
reflected in the variation of dRx/dz with x (where R x is 
the atomic displacement along the slip plane in the 
direction x parallel to the Burgers vector, and z is the 
coordinate perpendicular to the slip plane). In Fig. 12 
this variation, for planes at a distance z = +d~/2 from 
the slip plane, is shown. For the extended core, a 
maximum value of IdRx/dzl occurs at a small distance 
from the center of the dislocation, while for the singular 
core the term is monotonically increasing. 

In the present study, a simplified analytical model of 
the atomic displacements in the core region has been 
constructed with variable parameters which enable the 
influence of different core models upon the image to be 
studied. In this model, the atom at position x,z in the 
extended cell is displaced a distance R (x,z) as given by 
equation (4.1) for a dislocation with a singular core. 
However, atoms inside a 'core' of dimensions 2X by 2Z 
centered on the dislocation (see Fig. 10) are displaced 
by R'(x,z) where 

R'(x,z) = R(2X -- x, z) for x > 0, 

R'(x,z) = R ( - - 2 X -  x, z) for x < 0. (5.1) 

dRx l --~-) 
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Fig. 12. The variation of  dRx/dz with x for an undissociated edge 
dislocation, at a distance z = +d~1~/2 from the slip plane. Curves 
for an extended ( ) and singular ( - - - )  core are shown. 



G. R. ANSTIS AND D. J. H. COCKAYNE 523 

With this model, atom displacements have a mirror 
symmetry across the core boundaries at x = + X. Con- 
sequently, IdRx/dzl has a maximum value at x = +X, 
as shown in Fig. 12 for the core model of Cockayne & 
Vitek (1974) discussed previously. 

Using the above dislocation model and the periodic 
continuation method of image computation, images 
were calculated for the same cell parameters and 
diffraction geometry as used for Fig. 1 l(a). Examples 
of the images obtained are shown in Fig. 1 l(b), (c). 
When compared with the images for the singular core 
shown in Fig. 1 l(a), the images of the extended core 
show an additional prominent 'core' peak. This result 
confirms the presence of core peaks in images of 
extended cores suggested by earlier column approxi- 
mation calculations (Cockayne & Vitek, 1974). 

It is of interest to determine where in the diffraction 
pattern the information concerning the core peak is to 
be found, if only to determine the size of objective 
aperture required to include the information in the 
image. By comparing intensities in the elastic diffuse 
beams for the singular and extended cores, it is evident 
that information concerning the core peak is concen- 
trated in two side-bands around the Bragg position of 
the perfect crystal (see Fig. 13). The elastic diffuse 
reflections for the extended core show an increase in 
magnitude of up to six times that for the singular core. 
In this case, it is necessary to include this region of the 
diffraction pattern within the objective aperture to 
observe the core peak in the image, and this is demon- 
strated by computationally forming images using 
different extents of the diffraction pattern. 

To determine whether a core peak might be 
associated with a singular dislocation through instru- 
mental parameters, the effects of the radius of the 
objective aperture, spherical aberration and defocus 
were examined using the results of the scattering 

calculations from the equations in reciprocal space. For 
in-focus images, no significant differences in image 
detail were observed in changing the radius of the 
objective aperture from 0.05 A -~ to higher values, or 
when the coefficient of spherical aberration was 
increased to 5 mm. 

The effects of defocusing by several thousand 
&ngstr6ms are shown in Fig. 14. The radius of the 
objective aperture is 0.25 ,/k -~ and the spherical 
aberration is zero. Image detail was found not to be 
sensitive to small changes in these parameters. Follow- 
ing the discussion of § 2.4, these calculations suggest 
that approximating the second derivatives in equation 
(2.6) by zero is justified for an edge dislocation within 
one or two thousand &ngstr6ms of the exit face of the 
crystal. For thicker crystals any effects from this 
approximation are likely to be insignificant compared 
with the effects of convergence of the incident beam and 
thermal diffuse scattering. 

It can be concluded that the column approximation 
and the deformable-ion model can adequately account 
for the features of a weak-beam image of an edge dis- 
location in the orientation considered here, and that the 
image intensity is given by I tpg(x)l 2 provided that the 
image is approximately in focus. This conclusion means 
that any details which might be observed in experi- 
mental in-focus images which do not correspond to the 
single peak predicted by the simple model of the 
dislocation considered here, will require a different 
model of the dislocation. 

6. Conclusions 

From the forgoing analyses, the following con- 
clusions can be drawn: 

(1) The set of scattering equations considered by 
Howie & Basinski (1968) is valid irrespective of the 

[M_ODEL(1) - MODEL C2)1 
I9 L -  ~-6DEZ(~- _ 

000  2~0 9 

Fig. 13. Plot of relative diffracted intensities for crystals containing 
undissociated edge dislocations with core models (1) 2X = 15 A, 
(2) 2X = 10/~,, according to equation (5.1). Parameters as for 
Fig. 11. 
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Fig. 14. Dark-field weak-beam images of a singular edge dis- 
location in copper for varying values of defocus. The radius of 
the objective aperture is 0.25 A-~. Other details as for Fig. 5. 



524 ELECTRON MICROSCOPE IMAGES OF LATTICE DEFECTS 

degree of distortion of the crystal. However, to retain 
their usefulness in image computations when signifi- 
cant diffuse scattering exists between Bragg reflections, 
the effects of the objective aperture must be explicitly 
included in calculations of images using these 
equations, i.e. the effects of overlapping diffuse scatter- 
ing must be included in image calculations. 

(2) Whether or not the column approximation or the 
approximation of Takagi (1962) and Jouffrey & Taupin 
(1967) are valid depends upon the extent of diffuse 
scattering. For any given level of resolution and degree 
of distortion, the column approximation is valid for a 
sufficiently thin crystal. 

(3) In general for numerical work, the equations of 
Howie & Basinski (1968) are easiest to integrate when 
the deformable-ion model and the approximation of 
Takagi (1962) and Jouffrey & Taupin (1967) are valid. 
The method of periodic continuation is best suited to 
calculations in which significant image-detail occurs 
only over a small region. 

(4) Calculated weak-beam images of dislocations 
with extended cores show image peaks not present in 
calculated images of dislocations with singular cores. 

(5) Because of spherical aberration and, in thick 
foils, Fresnel diffraction, there may not be a direct 
correspondence between lattice fringes and lattice 
planes near the core of a dislocation, even if the corre- 
spondence is a direct one in perfect regions of the 
crystal. 
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